Bayesian Decision Theory

Krithika Venkataramani

Salmon and Sea Bass

Salmon

Sea Bass

Deciding between Sea Bass and Salmon

- Separate salmon and sea bass on a conveyor present in a fish packing plant
- State of nature: $\omega = \omega_1$ for sea bass and $\omega = \omega_2$ for salmon
- A priori probability: based on the relative numbers in catch
- If there are no other fish, $P(\omega_1) + P(\omega_2) = 1$
- Decision without seeing the next fish:
 - **■** Decide ω_1 if $P(\omega_1) > P(\omega_2)$
- For one fish, the above decision is OK, but does not seem right for making multiple decisions on all fish
- Additional information: lightness readings
- Class conditional probability density functions: $p(x|\omega_1)$ and $p(x|\omega_2)$

Hypothetical class conditional densities

Class conditional densities on lightness values

Bayes Rule

Suppose the lightness measurement x is known

$$p(x, \omega_j) = P(\omega_j \mid x) p(x) = p(x \mid \omega_j) P(\omega_j)$$

- Bayes Formula: $P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$
- For the 2 category case: $p(x) = \sum_{j=1}^{2} p(x \mid \omega_j) P(\omega_j)$
- Bayes formula: $posterior = \frac{likelihood \times prior}{evidence}$
- Decide ω_1 if $P(\omega_1|x) > P(\omega_2|x)$

Posterior Probabilities used for classification

Posterior probabilities for particular priors $P(\omega_1)=2/3$ and $P(\omega_2)=1/3$

Bayesian Decision Theory Extensions

- Minimum error: Decide ω_1 if $P(\omega_1|x) > P(\omega_2|x)$
- P(error): $P(\omega_2)$ on deciding ω_1 , and $P(\omega_1)$ on deciding ω_2

$$P(error) = \int_{R_1} P(\omega_2 \mid x) p(x) dx + \int_{R_2} P(\omega_1 \mid x) p(x) dx$$

Extensions

- More features: d-dimensional feature vector x
- **■** More categories: c classes ω_1 , ω_2 , ..., ω_c
- More actions, α_1 , α_2 , ..., α_a , other than merely deciding the state of nature
- **■** Loss functions, $\lambda(\alpha_i|\omega_i)$, more general than error probabilities

Bayes Rule for the general case

- Posterior probability: $P(\omega_j \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_j)P(\omega_j)}{p(\mathbf{x})}$ Evidence: $p(\mathbf{x}) = \sum_{j=0}^{c} p(\mathbf{x} \mid \omega_j)P(\omega_j)$
- Suppose on observing x, action α_i is taken
- However, the true state of nature could be ω_i
- Conditional risk of taking action α_i on observing x

$$R(\alpha_i \mid \mathbf{x}) = \sum_{i=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

- Expected Loss/Risk: $R = \int R(\alpha(\mathbf{x}) | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$
- Minimize expected risk by choosing action $\alpha(x)$ that minimizes conditional risk
- Bayes Decision Rule: Compute conditional risk for all actions and choose the action that minimizes the conditional risk

Two category classification

- Loss of taking action α_i when the true class is ω_i : λ_{ij}
- Conditional risk of taking the two actions

$$\begin{split} R(\boldsymbol{\alpha}_{\!\scriptscriptstyle 1} \mid \mathbf{x}) &= \lambda_{\!\scriptscriptstyle 11} P(\boldsymbol{\omega}_{\!\scriptscriptstyle 1} \mid \mathbf{x}) + \lambda_{\!\scriptscriptstyle 12} P(\boldsymbol{\omega}_{\!\scriptscriptstyle 2} \mid \mathbf{x}) \\ R(\boldsymbol{\alpha}_{\!\scriptscriptstyle 2} \mid \mathbf{x}) &= \lambda_{\!\scriptscriptstyle 21} P(\boldsymbol{\omega}_{\!\scriptscriptstyle 1} \mid \mathbf{x}) + \lambda_{\!\scriptscriptstyle 22} P(\boldsymbol{\omega}_{\!\scriptscriptstyle 2} \mid \mathbf{x}) \end{split}$$

- Decide ω_1 if $R(\alpha_1|x) < R(\alpha_2|x)$
- In effect, decide ω₁ if

$$\begin{split} &(\lambda_{21}-\lambda_{11})P(\omega_1\mid\mathbf{x})>(\lambda_{12}-\lambda_{22})P(\omega_2\mid\mathbf{x})\\ &\text{or, } (\lambda_{21}-\lambda_{11})p(\mathbf{x}\mid\omega_1)P(\omega_1)>(\lambda_{12}-\lambda_{22})p(\mathbf{x}\mid\omega_2)P(\omega_2)\\ &\text{or, } \frac{p(\mathbf{x}\mid\omega_1)}{p(\mathbf{x}\mid\omega_2)}>\frac{(\lambda_{12}-\lambda_{22})}{(\lambda_{21}-\lambda_{11})}\frac{P(\omega_2)}{P(\omega_1)} \end{split}$$

Likelihood ratio: $\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)}$

Classification using likelihood ratio

Minimum error rate classification

- Action α_i : decide ω_i
- Decision α_i is correct if true class is ω_i
- Decision α_i is incorrect if true class is ω_i , $j\neq i$
- Loss function of interest: symmetric zero-one loss function

$$\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases}$$

- All errors are equally costly
- For min. error, select α_i that maximizes $P(\omega_i|x)^{j=1}$
- Decide ω_i if $P(\omega_i|x) > P(\omega_i|x)$, $\forall j \neq i$

Discriminant functions

- Assign x to class ω_i if g_i(x) > g_i(x), ∀j≠i
- Discriminant functions: $g_i(x)$
- Examples:
 - $\mathbf{q}_{i}(\mathbf{x}) = P(\omega_{i}|\mathbf{x})$
 - $\mathbf{q}_{i}(\mathbf{x}) = \mathbf{p}(\mathbf{x}|\mathbf{\omega}_{i})\mathbf{P}(\mathbf{\omega}_{i})$

 - **▼** Two category case: $g(x) = g_1(x) g_2(x)$

Normal Densities

Uni-variate Normal:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

$$E(x) = \int xp(x)dx = \mu$$

$$E[(x-\mu)^2] = \sigma^2$$

Multi-variate Normal:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} \left((\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)\right)$$

$$\boldsymbol{\mu} = E(\mathbf{x}) = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$

$$\mathbf{\Sigma} = E[(\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^T] = \int (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^T p(\mathbf{x}) d\mathbf{x}$$

Samples from a two-dimensional Gaussian density

Transformations of a Gaussian density

Two dimensional two-category Gaussian densities

