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Salmon and Sea Bass




Deciding between Sea Bass and Salmon

Separate salmon and sea bass on a conveyor present in a
fish packing plant

State of nature: =, for sea bass and o=, for salmon
A priori probability: based on the relative numbers in catch
If there are no other fish, P(w,)+ P(®,) =1

Decision without seeing the next fish:

N Decide o, if P(®,) > P(®,)
For one fish, the above decision is OK, but does not seem
right for making multiple decisions on all fish
Additional information: lightness readings
Class conditional probability density functions: p(x| »,) and
p(x| @)



Hypothetical class conditional densities
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Class conditional densities on lightness values



Bayes Rule

m Suppose the lightness measurement x is known

p(x,w,) = P(w. | X)p(X) = p(X | w,)P(w)

m Bayes Formula: p(, | x)— px|w;P(w))
| p(x)

2
m Forthe 2 category case: p(x)= > p(x | w,)P(w,)
j=1

m Bayes formula: posterior — likelihood x prior
evidence

m Decide o, If P(w|X) > P(w,|x)



Posterior Probabilities used for classification
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Posterior probabilities for particular priors P(w®,)=2/3 and P(w,)=1/3



Bayesian Decision Theory Extensions

m Minimum error: Decide o, if P(®,|X) > P(®,|X)
m P(error): P(w,) on deciding ., and P(®, ) on deciding o,
P(error) = [ P(w, | X)p(X)dx + [ P(w, | ¥)p(x)dX
R R

2

m Extensions
< More features: d-dimensional feature vector x
N More categories: c classes - @, ®,, ..., ®,

N More actions, a,, a.,, .., a,, other than merely deciding the state of
nature

N Loss functions, A(a;|@;), more general than error probabilities



Bayes Rule for the general case

Posterior probability: Plw, [ x) =
Evidence: p(x) =) p(x|w )P(w,)
Suppose on obsejﬁ/ing X, action g is taken
However, the true state of nature could be @,

Conditional risk of taking action ¢; on observing X
R(oy | ) = > Nay |w,)P(w, | x)

Expected Loss/Risk: T R= f R(a(x) | x) p(x)dx

Minimize expected risk by choosing action a(x) that
minimizes conditional risk

Bayes Decision Rule: Compute conditional risk for all actions
and choose the action that minimizes the conditional risk



Two category classification

m Loss of taking action ¢; when the true class is @ : 4;
m Conditional risk of taking the two actions
R(ey [ x) = A,P(w, | ) + A,P(w, | x)
R(a, | x) = A P(w, | x) + A\ P(w, | x)
m Decide o, If R(ot;[X) < R(at,|X)
m In effect, decide o, if

()‘21 o )‘11)P("‘ﬁ ‘ X) > ()‘12 o Azz)P(wz ‘ X)
or, (A, = A P(x | w)P(w,) > (A, = A,,) p(x | w,)P(w,)
or p(x |w,) N (A, —,,) P(w,)
p(x|w,) (A, —A,) Pw,)
m Likelihood ratio: P> !“

p(x | w,)




Classification using likelthood ratio
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Minimum error rate classification

Action ¢; : decide @
Decision g is correct if true class is @
Decision g Is incorrect if true class Is @, |~

Loss function of interest: symmetric zero-one loss function
0,i=]j

Moy [w)) = i ]

All errors are equally costly
Conditional Risk: R(q; | x) = iA(ai | w)Pw; [x) = > Pw; |x) =1-P(w, | x)

For min. error, select a; that maximizes P(cw;i|X)
Decide a; If P(a;x) > Pw;[X), V=i
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Discriminant functions

m Assign x to class o; I g;(x) > g;(X), V=i
m Discriminant functions: g;(x)
m Examples:

N gi(X) = P(ai|x)

N gi(X) = p(x|o;)P(e)
N gi(x) = In p(X|o) + In P(e))
N Two category case: g(x) = g4(X) — g,(X)
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Normal Densities

1

F o
E( )—fxp( Jox = 1
E[(x— p)’] =0’
m Multi-variate Normal:

m Uni-variate Normal

p(x) = 2y /21‘ NG exp [—1((X -p) T (x - u))

n=E(x) = fxp(x)dx
E = E[(x-m)(x-w)"] = [ (x-m)(x-w)" p(d
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Samples from a two-dimensional Gaussian density
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Transformations of a Gaussian density
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Two dimensional two-category Gaussian densities
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