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Deciding between Sea Bass and Salmon 

 Separate salmon and sea bass on a conveyor present in a 
fish packing plantfish packing plant

 State of nature: =1 for sea bass and =2 for salmon
 A priori probability: based on the relative numbers in catch
 If there are no other fish, P(1)+ P(2) =1
 Decision without seeing the next fish:

 Decide 1 if P(1) > P(2)
 For one fish, the above decision is OK, but does not seem 

right for making multiple decisions on all fishright for making multiple decisions on all fish
 Additional information: lightness readings
 Class conditional probability density functions: p(x| 1) and 
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p(x| 2)  



Hypothetical class conditional densities

Class conditional densities on lightness values
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Class conditional densities on lightness values



Bayes Rule

 Suppose the lightness measurement x is known
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 Bayes Formula:
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 For the 2 category case:  
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 Bayes formula:
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 Decide 1 if P(1|x) > P(2|x)

evidence
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Posterior Probabilities used for classification

Posterior probabilities for particular priors P( )=2/3 and P( )=1/3

R2 R1 R2 R1
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Posterior probabilities for particular priors P(1)=2/3 and P(2)=1/3



Bayesian Decision Theory Extensions

 Minimum error: Decide 1 if P(1|x) > P(2|x)
 P(error): P( ) on deciding   and P( ) on deciding  P(error): P(2 ) on deciding 1 , and P(1 ) on deciding 2

1 2

2 1( ) ( | ) ( ) ( | ) ( )
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P error P x p x dx P x p x dxw w= +ò ò

 Extensions
 More features: d-dimensional feature vector x
 More categories: c classes - 1, 2, …, c

 More actions, 1, 2, .., a, other than merely deciding the state of 
nature

 Loss functions, (i|j), more general than error probabilities
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Bayes Rule for the general case

 Posterior probability:
 Evidence: 
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c

p p Pw w=åx x Evidence: 
 Suppose on observing x, action i is taken 
 However, the true state of nature could be j
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 Conditional risk of taking action i on observing x
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ò Expected Loss/Risk: 
 Minimize expected risk by choosing action (x) that 

minimizes conditional risk

1j=
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x

x x x x

minimizes conditional risk
 Bayes Decision Rule: Compute conditional risk for all actions 

and choose the action that minimizes the conditional risk
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Two category classification

 Loss of taking action i when the true class is j : ij

 Conditional risk of taking the two actions Conditional risk of taking the two actions
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 Decide 1 if R(1|x) < R(2|x)
 In effect, decide 1 if 
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 Likelihood ratio: 
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 Likelihood ratio: 1
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Classification using likelihood ratio
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Minimum error rate classification

 Action i : decide i

 Decision  is correct if true class is  Decision i is correct if true class is i

 Decision i is incorrect if true class is j, ji
 Loss function of interest: symmetric zero-one loss functiony
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 All errors are equally costly
 Conditional Risk:
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 For min. error, select i that maximizes P(i|x)
 Decide i if P(i|x) > P(j|x), ji
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Discriminant functions

 Assign x to class i if gi(x) > gj(x), ji
 Discriminant functions: g (x) Discriminant functions: gi(x)
 Examples: 

 gi(x) = P(i|x) 
 gi(x) = p(x|i)P(i)
 gi(x) = ln p(x|i) +  ln P(i)
 Two category case: g(x) = g1(x) – g2(x) Two category case: g(x)  g1(x) g2(x)
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Normal Densities

 Uni-variate Normal: 2
1 1
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 Multi-variate Normal:
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Samples from a two-dimensional Gaussian density
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Transformations of a Gaussian density
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Two dimensional two-category Gaussian densities
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